Chromosomal double-strand break repair in Ku80-deficient cells.
نویسندگان
چکیده
منابع مشابه
Double-strand break repair in Ku86- and XRCC4-deficient cells.
The Ku86 and XRCC4 proteins perform critical but poorly understood functions in the repair of DNA double-strand breaks. Both Ku 86- and XRCC4-deficient cells exhibit profound radiosensitivity and severe defects in V(D)J recombination, including excessive deletions at recombinant junctions. Previous workers have suggested that these phenomena may reflect defects in joining of the broken DNA ends...
متن کاملDNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction
BACKGROUND Boron neutron capture reaction (BNCR) is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He) particle and a recoiled lithium nucleus (7Li). These particles have the characteristics of high linear energy transfer (LET) radiation and have marked biological effects. The purpose of this study is to verify that BNCR will i...
متن کاملDouble strand break repair.
DNA double-strand breaks (DSBs) are the most dangerous form of DNA damage and can lead to death, mutation, or malignant transformation. Mammalian cells use three major pathways to repair DSBs: homologous recombination (HR), classical nonhomologous end joining (C-NHEJ), and alternative end joining (A-NHEJ). Cells choose among the pathways by interactions of the pathways with CtIP and 53BP1. HR i...
متن کاملDNA Double-Strand Break Repair
ownloade C regulates a myriad of genes controlling cell proliferation, metabolism, differentiation, and apoptosis. lso controls the expression of DNA double-strand break (DSB) repair genes and therefore may be a ial target for anticancer therapy to sensitize cancer cells to DNA damage or prevent genetic instability. report, we studied whether MYC binds to DSB repair gene promoters and modulates...
متن کاملDNA double-strand break repair
The integrity of genomic DNA is crucial for its function. And yet, DNA in living cells is inherently unstable. It is subject to mechanical stress and to many types of chemical modification that may lead to breaks in one or both strands of the double helix. Within the cell, reactive oxygen species generated by normal respiratory metabolism can cause double-strand breaks, as can stalled DNA repli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1996
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.93.17.8929